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Synthesis of the Enediyne Aglycon Scheme 1
(£)-Calicheamicinone
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The unusual structure, potent antitumor activity, amditro
mechanism of action of calicheamicirhas attracted a great deal gcheme 2
of attention (Scheme 1).To date, four syntheses of the aglycon
. . OMe OMe
calicheamicinone have been reported by the groups of Dan-
ishefsky? Nicolaou? and Clive (2 reports). The former two PhI(OAc)
groups have also synthesized calicheanfi€irOur own synthetic HO COEL o COLEt
studies, based upon gACo,(CO)—propargylic aldol cyclization OMe MeO” OMe
to form the 10-membered enediyne ring, produdéd[TBS 3 . 4(87%)
instead of TES] (Scheme 2) as the pivotal intermediate, but not ~
in sufficient quantities to readily explore the full range of 4a |
protection-deprotection options that were necessary to complete s
the synthesis 02.” Consequently, it was decided to examine a OMe OMe
different route that would supply gram amounts1& While
there is a substantial literature describing the various strategies -— COEL
that have been developed for the synthesig, dff is notable that OMf e OMe
the potentially most direct approach, namely one based upon an 5(R =H, R’ =TIPS) (76%)
X : 8 (X = CH,OH) 6(R=R'=H)
o-quinone monoketal has not been repoftedihe Danishefsky H 9(X=CHO) (@3%) R' 7(R=TES, R =H) (§83%)
route most closely parallels a quinone monoketal strategy but uses '
the Becker-Adler spiro-epoxide reactiotwvhich requires deletion . OMe| LiN(TMS),
of one carbon atom (C-14) and replacement by a two-carbon side
chain (C-14,15).
The phenol3 was prepared from commercially available =\ PPTS
5-methoxysalicylic acid in four standard stéfsOxidation of3 TESO == TESO
with Phl(OAc)/MeOH!! gave theo-quinone monoketat (87%), MeO J MeO
. . . GH
which was treated withato give5 (76%) (Scheme 2). Removal MO 0 X = 0Om B ©9%) T 13 04%)
of the TIPS group to givé and protection of the tertiary hydroxyl 11 (X = B-OH, o-H)
12(X=0) .
(1) Enediyne Antibiotics as Antitumor AgenBorders, D. B., Doyle, T. BCls, basic ALO,
W., Eds.; Dekker, Inc.: New York, 1995.
(2) Cabal, M. P.; Coleman, R. S.; Danishefsky, SJ.JAm. Chem. Soc.
199Q 112, 3253. Haseltine, J. N.; Cabal, M. P.; Mantlo, N. B.; lwasawa, N.;
Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. Km.
Chem. Soc1991, 113 3850.
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Scarlato, G. R.; Suzuki, T.; Nicolaou, K. @. Am. Chem. Sod.993 115 H
7612, OR 15 (R=H) 81%)
(4) Clive, D. L. J.; Bo, Y.; Tao, Y.; Daigneault, S.; Wu, Y.-J.; Meignan G. 16 (R = TMS) 14 (94%)
J. Am. Chem. Sod 996 118 4904.
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Danishefsky, S. 1. Org. Chem1996 61, 16.
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S0c.1993 115, 7625. Nicolaou, K. C.; Hummel, W.; Pitsinos, E. N.; Nakada,
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(7) Magnus, P.; Miknis, G. F.; Press: N. J.; Grandjean, D.; Taylor, G. M.; 17 (85%, 21% from 3)
Harling, J.J. Am. Chem. S0d 997 119 6739.
8) For recent extensive reviews, see: Lhermitte, H.; Grierson, D. S. -
Co%t)emp. Org. SyntL.996 3, 41; 1996 3, 93. group as a TES ether resultedir(33% from_ 5)._ Red_uctlon of
(9) Adler, E.; Brasen, S.; Miyake, Hicta Chem. Scand 971, 25, 2055. 7 using DIBAL-H/toluene gav&, which on oxidation with Dess
Bea‘g)rvBH-‘D-? Bremholt, T.. Adler, ETetrahedron Letf1972 13, 4205~ Martin (D—M) periodinané” gave the aldehyd@ (93% from?7).
romination ofl gavell, which was converted In . Prolonge . °
exposure ofll to CuNaOH/HO gavelV, which on treatment with EtoH/ ~ ExPposure of9 to LIN(TMS),/THF at —78 °C gavel0 and 11
SOCh provided3(overa|l yield 59%) (1:4), which were directly oxidized (BM) to the crystalline
ketonel2. Reduction with DIBAL-H/toluene at78 °C produced
Bry/AcOH Cumaon the desired 1@-alcohol10 (69% from9; 11 could not be detected
Copt AONa COR 90 <0 1o by H NMR). Treatment oflOwith PPTS in aqueous dioxane at
ox 60 °C gavel3(94%), which on exposure to B€CH,Cl,/heptane
Mel/K,CODMI__ 35&3&3%@% Enowsomzl: e EK’(S%Z‘Z and workup with basic ADs/CH,Cl, gave14 (94%)313
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Treatment ofL4 with PhhS=NH/THF gave the 2-amino adduct
15(81%, on 4 g scale}? All attempts to ketalize the C-3 carbonyl
group of15 (and closely related intermediates) were unsuccessful
(preventing correlation with the other syntheses); consequently,

recourse was made to an enol carbonate protecting group strategy. ,, W-E

Treatment oflL5 with TMSCN gavel6, which was immediately
exposed to Bo®©O/EtzN/DMAP/CH,CI, followed by citric acid/
MeOH to give the adductl7 (85%)> The use of methyl

carbonate/carbamate protecting groups was precluded at this stage

due to their lability under the WadswortfEmmons reaction
conditions.

Intermolecular WadsworthEmmong? reaction [(MeO)POCH-

CO,Me/LIN(TMS),/THF —78°C to 25°C] of 17 gavel8 (97%),
(Scheme 3}/ While the tris-Boc protection had served its
purpose in the previous step, it was too robust to allow
deprotection without degradation of the trisulfide in late stage
intermediates. Consequenth8was treated with CJ£O,H/CH,-
Cl, (1:1) to givel9 (96%) and reprotected by sequential treatment
with MeO,CCI/EtN/DMAP/CH,CI, followed by BogO/EN/
DMAP/CH,CI, to give 20 (75%). By analogy to the protection
of 16, it is thought thatl9 undergoeg-acylation followed by
intramolecularN-acyl transfer (twice) to givel9a which on
workup undergoes enol carbonate hydrolysis to g9k Reduc-
tion of the lactone20 with NaBH,/CeCk-7H,O0/MeOH/CHCI,
gave the diol21, which was selectively protected (TMSCN
followed by AcOH/HO/THF) to give23(81%, via22). Standard
Mitsunobu conditions (AcSH/PRIDIPAD/THF/0 °C) provided
the thioacetat@4 (72%), which was reductively cleaved (DIBAL-
H/THF/—78 to—10°C) and treateth situwith the Harpp reagent
PhthSSM& to give 25 (65%) after desilylation. Deprotection
of the enol Boc group with TESOT{/2,6-lutidine/GEl, (71%),
followed by removal of the two TES-groups witRTSA/THF/
H,0 at 55°C provided2 (50%).

The synthesis o from 5-methoxysalicylic acid requires 28

(13) The hemiketal3ais the first formed product wheh3is treated with
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(15) The unusual formation of the bis-carbamatecan be explained by
the following observation. Treatment &8 with TFA gavel8a which when
exposed to DMAP/CECI, rapidly underwent enol carbonate bis-carbamate
rearrangement to givé8h.
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Scheme 3
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steps, involving the chromatographic purification of nine inter-
mediates, in an overall yield of 1.4% at an average of 86% per
step. This results in the most efficient synthesis to-date (Dan-
ishefsky 22 steps, 0.2%, Nicolaou 34 steps, 0.2%, and Clive 37
steps, 0.9%). The opportunity to modify the route to provide an
enantioselective synthesis 2fis possible by the application of
asymmetric induction methodology for the conversioraiito

5% and through well-precedented enzymatic resolutiod 4
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