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The unusual structure, potent antitumor activity, andin Vitro
mechanism of action of calicheamicin1 has attracted a great deal
of attention (Scheme 1).1 To date, four syntheses of the aglycon
calicheamicinone2 have been reported by the groups of Dan-
ishefsky,2 Nicolaou,3 and Clive (2 reports).4 The former two
groups have also synthesized calicheamicin.5,6 Our own synthetic
studies, based upon anη2Co2(CO)6-propargylic aldol cyclization
to form the 10-membered enediyne ring, produced15 [TBS
instead of TES] (Scheme 2) as the pivotal intermediate, but not
in sufficient quantities to readily explore the full range of
protection-deprotection options that were necessary to complete
the synthesis of2.7 Consequently, it was decided to examine a
different route that would supply gram amounts of15. While
there is a substantial literature describing the various strategies
that have been developed for the synthesis of2, it is notable that
the potentially most direct approach, namely one based upon an
o-quinone monoketal has not been reported.8 The Danishefsky
route most closely parallels a quinone monoketal strategy but uses
the Becker-Adler spiro-epoxide reaction,9 which requires deletion
of one carbon atom (C-14) and replacement by a two-carbon side
chain (C-14,15).
The phenol3 was prepared from commercially available

5-methoxysalicylic acid in four standard steps.10 Oxidation of3
with PhI(OAc)2/MeOH11 gave theo-quinone monoketal4 (87%),
which was treated with4a to give5 (76%) (Scheme 2). Removal
of the TIPS group to give6 and protection of the tertiary hydroxyl

group as a TES ether resulted in7 (83% from5). Reduction of
7 using DIBAL-H/toluene gave8, which on oxidation with Dess-
Martin (D-M) periodinane12 gave the aldehyde9 (93% from7).
Exposure of9 to LiN(TMS)2/THF at -78 °C gave10 and 11
(1:4), which were directly oxidized (D-M) to the crystalline
ketone12. Reduction with DIBAL-H/toluene at-78°C produced
the desired 12R-alcohol10 (69% from9; 11could not be detected
by 1H NMR). Treatment of10with PPTS in aqueous dioxane at
60 °C gave13 (94%), which on exposure to BCl3/CH2Cl2/heptane
and workup with basic Al2O3/CH2Cl2 gave14 (94%).13
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Treatment of14with Ph2SdNH/THF gave the 2-amino adduct
15 (81%, on 4 g scale).14 All attempts to ketalize the C-3 carbonyl
group of15 (and closely related intermediates) were unsuccessful
(preventing correlation with the other syntheses); consequently,
recourse was made to an enol carbonate protecting group strategy.
Treatment of15with TMSCN gave16, which was immediately
exposed to Boc2O/Et3N/DMAP/CH2Cl2 followed by citric acid/
MeOH to give the adduct17 (85%).15 The use of methyl
carbonate/carbamate protecting groups was precluded at this stage
due to their lability under the Wadsworth-Emmons reaction
conditions.
Intermolecular Wadsworth-Emmons16 reaction [(MeO)2POCH2-

CO2Me/LiN(TMS)2/THF-78 °C to 25°C] of 17gave18 (97%),
(Scheme 3).17 While the tris-Boc protection had served its
purpose in the previous step, it was too robust to allow
deprotection without degradation of the trisulfide in late stage
intermediates. Consequently,18was treated with CF3CO2H/CH2-
Cl2 (1:1) to give19 (96%) and reprotected by sequential treatment
with MeO2CCl/Et3N/DMAP/CH2Cl2 followed by Boc2O/Et3N/
DMAP/CH2Cl2 to give20 (75%). By analogy to the protection
of 16, it is thought that19 undergoesO-acylation followed by
intramolecularN-acyl transfer (twice) to give19a, which on
workup undergoes enol carbonate hydrolysis to give19b. Reduc-
tion of the lactone20 with NaBH4/CeCl3‚7H2O/MeOH/CH2Cl2
gave the diol21, which was selectively protected (TMSCN
followed by AcOH/H2O/THF) to give23 (81%, via22). Standard
Mitsunobu conditions (AcSH/PPh3/DIPAD/THF/0 °C) provided
the thioacetate24 (72%), which was reductively cleaved (DIBAL-
H/THF/-78 to-10 °C) and treatedin situwith the Harpp reagent
PhthSSMe18 to give 25 (65%) after desilylation. Deprotection
of the enol Boc group with TESOTf/2,6-lutidine/CH2Cl2 (71%),
followed by removal of the two TES-groups withp-TSA/THF/
H2O at 55°C provided2 (50%).
The synthesis of2 from 5-methoxysalicylic acid requires 28

steps, involving the chromatographic purification of nine inter-
mediates, in an overall yield of 1.4% at an average of 86% per
step. This results in the most efficient synthesis to-date (Dan-
ishefsky 22 steps, 0.2%, Nicolaou 34 steps, 0.2%, and Clive 37
steps, 0.9%). The opportunity to modify the route to provide an
enantioselective synthesis of2 is possible by the application of
asymmetric induction methodology for the conversion of4 into
519 and through well-precedented enzymatic resolution of14.20
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